Fast algorithms for hierarchically semiseparable matrices
نویسندگان
چکیده
Semiseparable matrices and many other rank-structured matrices have been widely used in developing new fast matrix algorithms. In this paper, we generalize the hierarchically semiseparable (HSS) matrix representations and propose some fast algorithms for HSS matrices. We represent HSS matrices in terms of general binary HSS trees and use simplified postordering notation for HSS forms. Fast HSS algorithms including new HSS structure generation and HSS form Cholesky factorization are developed. Moreover, we provide a new linear complexity explicit ULV factorization algorithm for symmetric positive definite HSS matrices with a low-rank property. The corresponding factors can be used to solve the HSS systems also in linear complexity. Numerical examples demonstrate the efficiency of the algorithms. All these algorithms have nice data locality. They are useful in developing fast-structured numerical methods for large discretized PDEs (such as elliptic equations), integral equations, eigenvalue problems, etc. Some applications are shown. Copyright q 2009 John Wiley & Sons, Ltd.
منابع مشابه
Transforming a hierarchical into a unitary-weight representation
In this paper we consider a class of hierarchically rank structured matrices, including some of the hierarchical matrices occurring in the literature, such as hierarchically semiseparable (HSS) and certain H∈-matrices. We describe a fast O(rn log(n)) and stable algorithm to transform this hierarchical representation into a so-called unitary-weight representation, as introduced in an earlier wor...
متن کاملFast and Stable Algorithms for Banded Plus Semiseparable Systems of Linear Equations
We present fast and numerically stable algorithms for the solution of linear systems of equations, where the coefficient matrix can be written in the form of a banded plus semiseparable matrix. Such matrices include banded matrices, banded bordered matrices, semiseparable matrices, and block-diagonal plus semiseparable matrices as special cases. Our algorithms are based on novel matrix factoriz...
متن کاملEfficient Parallel Algorithms for Hierarchically Semiseparable Matrices
Recently, hierarchically semiseparable (HSS) matrices have been used in the development of fast direct sparse solvers. Key applications of HSS algorithms, coupled with multifrontal solvers, appear in solving certain large-scale computational inverse problems. Here, we develop massively parallel HSS algorithms appearing in these solution methods, namely, parallel HSS construction using the rank ...
متن کاملMulti-layer Hierarchical Structures and Factorizations
We propose multi-layer hierarchically semiseparable (MHS) structures for the fast factorizations of dense matrices arising from multi-dimensional discretized problems such as certain integral operators. The MHS framework extends hierarchically semiseparable (HSS) forms (which are essentially one dimensional) to higher dimensions via the integration of multiple layers of structures, i.e., struct...
متن کاملO(n) Algorithms for Banded Plus Semiseparable Matrices
We present a new representation for the inverse of a matrix that is a sum of a banded matrix and a semiseparable matrix. In particular, we show that under certain conditions, the inverse of a banded plus semiseparable matrix can also be expressed as a banded plus semiseparable matrix. Using this result, we devise a fast algorithm for the solution of linear systems of equations involving such ma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Numerical Lin. Alg. with Applic.
دوره 17 شماره
صفحات -
تاریخ انتشار 2010